Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 88(2): 19, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245613

RESUMO

We consider populations with time-varying growth rates living in sinks. Each population, when isolated, would become extinct. Dispersal-induced growth (DIG) occurs when the populations are able to persist and grow exponentially when dispersal among the populations is present. We provide a mathematical analysis of this surprising phenomenon, in the context of a deterministic model with periodic variation of growth rates and non-symmetric migration which are assumed to be piecewise continuous. We also consider a stochastic model with random variation of growth rates and migration. This work extends existing results of the literature on the DIG effects obtained for periodic continuous growth rates and time independent symmetric migration.


Assuntos
Ecossistema , Crescimento Demográfico , Dinâmica Populacional , Modelos Biológicos
2.
Theor Popul Biol ; 154: 1-26, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37453615

RESUMO

We consider a population distributed between two habitats, in each of which it experiences a growth rate that switches periodically between two values, 1-ɛ>0 or -(1+ɛ)<0. We study the specific case where the growth rate is positive in one habitat and negative in the other one for the first half of the period, and conversely for the second half of the period, that we refer as the (±1) model. In the absence of migration, the population goes to 0 exponentially fast in each environment. In this paper, we show that, when the period is sufficiently large, a small dispersal between the two patches is able to produce a very high positive exponential growth rate for the whole population, a phenomena called inflation. We prove in particular that the threshold of the dispersal rate at which the inflation appears is exponentially small with the period. We show that inflation is robust to random perturbation, by considering a model where the values of the growth rate in each patch are switched at random times: we prove that inflation occurs for low switching rate and small dispersal. We also consider another stochastic model, where after each period of time T, the values of the growth rates in each patch is chosen randomly, independently from the other patch and from the past. Finally, we provide some extensions to more complicated models, especially epidemiological and density dependent models.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Crescimento Demográfico
3.
J Math Biol ; 79(1): 393-431, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31053893

RESUMO

The dynamics of species' densities depend both on internal and external variables. Internal variables include frequencies of individuals exhibiting different phenotypes or living in different spatial locations. External variables include abiotic factors or non-focal species. These internal or external variables may fluctuate due to stochastic fluctuations in environmental conditions. The interplay between these variables and species densities can determine whether a particular population persists or goes extinct. To understand this interplay, we prove theorems for stochastic persistence and exclusion for stochastic ecological difference equations accounting for internal and external variables. Specifically, we use a stochastic analog of average Lyapunov functions to develop sufficient and necessary conditions for (i) all population densities spending little time at low densities i.e. stochastic persistence, and (ii) population trajectories asymptotically approaching the extinction set with positive probability. For (i) and (ii), respectively, we provide quantitative estimates on the fraction of time that the system is near the extinction set, and the probability of asymptotic extinction as a function of the initial state of the system. Furthermore, in the case of persistence, we provide lower bounds for the expected time to escape neighborhoods of the extinction set. To illustrate the applicability of our results, we analyze stochastic models of evolutionary games, Lotka-Volterra dynamics, trait evolution, and spatially structured disease dynamics. Our analysis of these models demonstrates environmental stochasticity facilitates coexistence of strategies in the hawk-dove game, but inhibits coexistence in the rock-paper-scissors game and a Lotka-Volterra predator-prey model. Furthermore, environmental fluctuations with positive auto-correlations can promote persistence of evolving populations and persistence of diseases in patchy landscapes. While our results help close the gap between the persistence theories for deterministic and stochastic systems, we highlight several challenges for future research.


Assuntos
Ecologia/métodos , Meio Ambiente , Extinção Biológica , Modelos Biológicos , Algoritmos , Animais , Cadeias de Markov , Plantas , Densidade Demográfica , Dinâmica Populacional
4.
J Math Biol ; 62(5): 655-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20532555

RESUMO

Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations' invasion rates is positive for any (ergodic) stationary distribution associated with a sub collection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka-Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.


Assuntos
Biota , Meio Ambiente , Modelos Biológicos , Algoritmos , Aptidão Genética , Variação Genética , Genótipo , Cadeias de Markov , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Probabilidade , Distribuições Estatísticas , Processos Estocásticos
5.
Theor Popul Biol ; 76(1): 19-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19358861

RESUMO

Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting "bounded" dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.


Assuntos
Meio Ambiente , Dinâmica Populacional , Crescimento Demográfico , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Ecossistema , Cadeias de Markov , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Desenvolvimento Vegetal , Densidade Demográfica , Processos Estocásticos
6.
J Biol Dyn ; 2(2): 180-95, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22880700

RESUMO

Garay and Hofbauer (SIAM J. Math. Anal. 34 (2003)) proposed sufficient conditions for robust permanence and impermanence of the deterministic replicator dynamics. We reconsider these conditions in the context of the stochastic replicator dynamics, which is obtained from its deterministic analogue by introducing Brownian perturbations of payoffs. When the deterministic replicator dynamics is permanent and the noise level small, the stochastic dynamics admits a unique ergodic distribution whose mass is concentrated near the maximal interior attractor of the unperturbed system; thus, permanence is robust against small unbounded stochastic perturbations. When the deterministic dynamics is impermanent and the noise level small or large, the stochastic dynamics converges to the boundary of the state space at an exponential rate.


Assuntos
Processos Estocásticos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA